

Titel & Gliederung

Herstellerdaten richtig anwenden

- Rechtliche Rahmenbedingungen und Fristen
- Energy-Label und Produktdatenblatt
- Gütesiegel, Umweltzeichen & Effizienzkennzahlen
- Auslegung und Dimensionierung in der Praxis
- Zusammenfassung und Fazit

Titel & Gliederung

Herstellerdaten richtig anwenden

- Rechtliche Rahmenbedingungen und Fristen
- Energy-Label und Produktdatenblatt
- Gütesiegel, Umweltzeichen & Effizienzkennzahlen
- Auslegung und Dimensionierung in der Praxis
- Zusammenfassung und Fazit

Europäische Richtlinien, Gesetze und Verordnungen für Wärmepumpen

- Erneuerbare-Energien-Richtlinie (RES-Directive)
- Energieeffizienz-Richtlinie (EED)
- F-Gas-Verordnung (2014/517/EU)
- Umweltzeichen-Richtlinie → zus. ökologische Anforderungen
- EU-Gebäuderichtlinie (EPBD)
- Ökodesign-Richtlinie (ErP-Directive) → Qualität & Effizienz
- Energy-Labeling-Richtlinie (2010/30/EU)2015) → Kennzeichnung

Quelle: (Köfinger) Energy-Labelling – AIT – Austrian Institute of Technology 2016

EU-Richtlinien zur Verringerung des Energieverbrauchs von Produkten

Richtlinie 2010/30/EU Energy-Labelling

Kennzeichnung zur Sensibilisierung der Verbraucher
 (2 Verordnungen (811/2013 & 812/2013) veröffentlicht im Amtsblatt der EU am 6. September 2013)

Richtlinie 2009/125/EG Eco-Design (Ökodesign- bzw. ErP*-Richtlinie)

Anforderungen an die umweltgerechte Gestaltung in der Phase der Produktgestaltung

(2 Verordnungen (813/2013 & 814/2013) veröffentlicht im Amtsblatt der EU am 6. September 2013)

Quelle: (Köfinger) Energy-Labelling – AIT – Austrian Institute of Technology 2016

*) Energy-related Products, ErP

Vergleich – Ökodesign-RL und Energy-Labelling

	Ökodesign	Energy-Labelling
Betrifft	Hersteller	Konsumenten
Ziel	Produkte mit sehr schlechter Effizienz zum Verkauf verbieten	Konsumenten-Information über die Effizienz von Produkten
Kennzeichen	-	Energy-Label
Umfang	Raumheizgeräte ≤ 400 kW Kombiheizgeräte ≤ 400 kW Warmwasserbereiter ≤ 400 kW Warmwasserspeicher ≤ 2000 I keine Festbrennstoffe keine biomassebasierten Brennstoffe (feste, flüssige & gasförmige)	Raumheizgeräte ≤ 70 kW Kombiheizgeräte ≤ 70 kW Warmwasserbereiter ≤ 70 kW Warmwasserspeicher ≤ 500 l keine Festbrennstoffe keine biomassebasierten Brennstoffe (feste, flüssige & gasförmige)
Tests	Normen	Methoden nach anerkanntem Stand der Messtechnik sowie ggf. nach harmonisierten Normen keine akkreditierten Prüfinstitute erforderlich
Verantwortung	Hersteller / Inverkehrbringer	Hersteller / Inverkehrbringer
Überprüfung	Marktaufsicht	Marktaufsicht
		Qualla: (Käfingar) Enargy Lalbaling AIT Aust

Quelle: (Köfinger) Energy-Lalbeling – AIT – Austrian Institute of Technology 2016

Ziele der ErP- und Energy-Labelling-Richtlinien

- Betroffen sind alle "energiebetriebenen" Geräte und Produkte mit "erheblichen" Umweltauswirkungen und hohem Verbesserungspotential
- Insgesamt mehr als 200.000 Stück pro Jahr in der EU
- Ausnahme: Bereich Mobilität hier existieren eigene Richtlinien

Energy-Labelling für Raumheizung und Warmwasserbereitung:

- Information für den Endnutzer über Primärenergieeffizienz zum Vergleich unterschiedlicher Technologien bzw. Systemkonfigurationen
- Keine wirtschaftliche Bewertung, Investitions- und Betriebskosten werden nicht bewertet
 Quelle: (Köfinger) Energy-Labelling AIT Austrian Institute of Technology 2016

Betroffene Produktgruppen

- Insgesamt mehr als 30 Lose (Gruppen)
- Relevante Lose:
 - Los 1: Heizkessel und Kombiheizkessel
 - Los 2: Warmwasserbereiter
 - Los 6: Standby-Verluste
 - o Los 10: Raumklima-Anlagen
 - o Los 11: Nassläufer-Umwälzpumpen
 - Los 15: Festbrennstoffkessel (z.B. Holz-Biomasse)
 - o Usw.

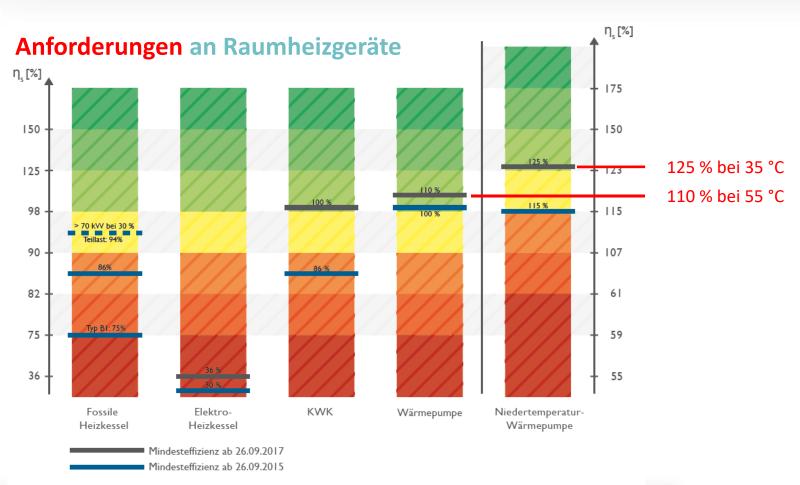
Quelle: (Köfinger) Energy-Labelling – AIT – Austrian Institute of Technology 2016

Zeitplan für Raumheizgeräte mit Wärmepumpe (Los 1)

bei Niedertemperatur-Wärmepumpen "jahreszeitbedingten Raumheizungs-Energieeffizienz" $\eta_{_{\text{S}}} \! < 115~\%$

Abb.7a: Zeitstrahl für Raumheizgeräte mit Wärmepumpe

 $^{^{2}}$ bei Niedertemperatur-Wärmepumpen "jahreszeitbedingten Raumheizungs-Energieeffizienz" η_{c} < 125 %


Zeitplan für Warmwasserbereiter (Los 2)

Mindestanforderungen an die Warmwasserbereitungs-Energieeffizienz abhängig vom jeweiligen Zapfprofil

Abb.7b: Zeitstrahl für Warmwasserbereiter mit Wärmepumpe

Titel & Gliederung

Herstellerdaten richtig Anwenden

- Rechtliche Rahmenbedingungen und Fristen
- Energy-Label und Produktdatenblatt
- Gütesiegel, Umweltzeichen & Effizienzkennzahlen
- Auslegung und Dimensionierung in der Praxis
- Zusammenfassung und Fazit

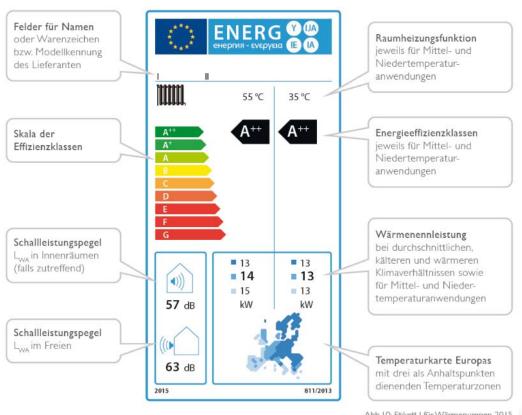
Energy-Label und Produktdatenblatt 🔷

Einteilung der unterschiedlichen Effizienzklassen

Effizienzklassen für Raumheizgeräte (A+++ bis G)

bis 55 °C

bis 35 °C


	Raumheizungs-Energieeffizienz von Heizgeräten ausgenommen NT-WP*	Raumheizungs-Energieeffizienz von NT-WP*	
Klasse für die jahreszeitbedingte Raumheizungs-Energieeffizienz	Jahreszeitbedingte Raumheizungs-Energieeffizienz $\eta_{\rm S}$ in %	Jahreszeitbedingte Raumheizungs-Energieeffizienz η_z in %	
A***	$\eta_s \ge 150$	η _s ≥ 175	
A++	$125 \le \eta_s < 150$	150 ≤ η ₅ < 175	
A^{+}	$98 \le \eta_s < 125$	$123 \le \eta_s < 150$	
A	$90 \le \eta_s < 98$	115 ≤ η _s < 123	
В	$82 \le \eta_s < 90$	1 07 ≤ η ₅ < 115	
С	$75 \le \eta_s < 82$	$100 \le \eta_s < 107$	
D	$36 \le \eta_s < 75$	$61 \le \eta_s < 100$	
E	$34 \le \eta_s < 36$	$59 \le \eta_s < 61$	
F	$30 \le \eta_s < 34$	55 ≤ η _s < 59	
G	η _s < 30	$\eta_s < 55$	

Quelle: (Köfinger) Energy-Labelling – AIT – Austrian Institute of Technology 2016

Energy-Label und Produktdatenblatt 🔷

Erläuterung des Energy-Labels für Wärmepumpen

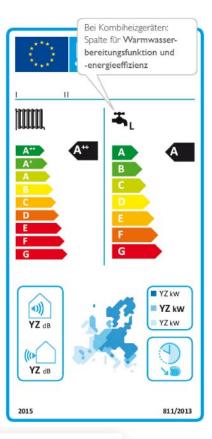


Abb.10: Etikett I für Wärmepumpen 2015

Energy-Label und Produktdatenblatt

Klimazonen im Energy-Label

Kälteres Klima (Helsinki)

Minimale Temperatur: -22 °C

Maximale Temperatur: 15 °C

Mittleres Klima (Straßburg)

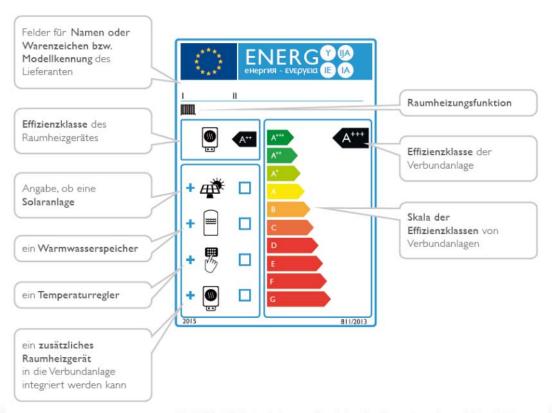
Minimale Temperatur: -10 °C

Maximale Temperatur: 15 °C

Wärmeres Klima (Athen)

Minimale Temperatur: 2 °C

Maximale Temperatur: 15 °C



Quelle: (Köfinger) Energy-Labelling – AIT – Austrian Institute of Technology 2016

Energy-Label und Produktdatenblatt 🔷

Erläuterung des Energy-Labels für Verbundanlagen

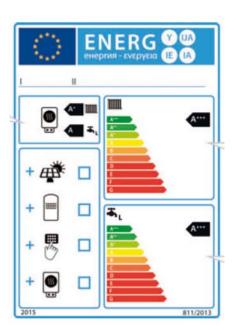
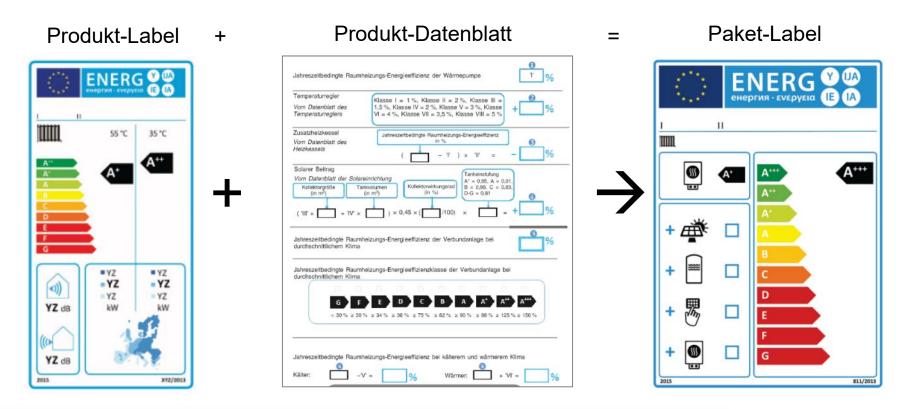



Abb. I 6: Etikett für Verbundanlagen aus Raumheizgeräten, Temperaturreglem und Solareinrichtungen

Erläuterung des Paket-Labels

Energy-Label und Produktdatenblatt 🕒

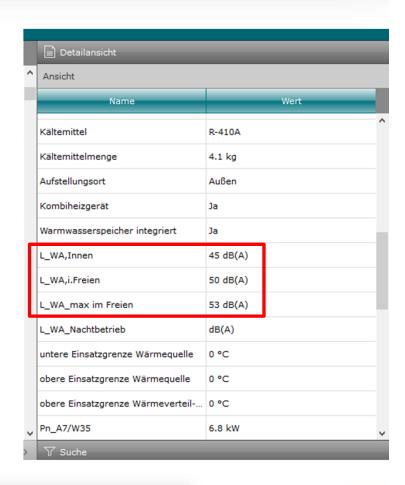
Produkt-Datenblatt für WP

Name des Lieferanten

Name des Lieferanten					IDIVI Energiesysteme		Energieeffizienz Raumheizung bei d	
Modellkennung des Liefera	nten				TERRA AL 24 Twin		jeweils für Niedertemperaturanwend Energieverbrauch Raumheizung bei	durchs
Wärmeträger			Luft-Wasser		Klimaverhältnissen jeweils für Mitteltempera Energieverbrauch Raumheizung bei durchso			
Parameter	Symbol	Einheit	Klimazone	3		4	Klimaverhältnissen jeweils für Niede	ertemper
Parameter	Symbol	Einneit	Kiimazone	-			Schallleistungspegel Innen Wärmenennleistung bei kälteren Klii	maverhä
Klasse für Raumheizungs- Energieeffizienz	×	-	kalt				Mitteltemperaturanwendungen	marcino
					AT Produkt		Wärmenennleistung bei kälteren Klii	maverhä
			mittel		W. J.		Niedertemperaturanwendungen Wärmenennleistung bei wärmeren h	Climaver
			warm		Niedertemperaturanwendung bei durchschnittlichen Klimaverhältnissen		Mitteltemperaturanwendungen	
			waiii		Jahreszeitbedingte Raumheizungs-Ene	rnieeffizienzklasse	Wärmenennleistung bei wärmeren h Niedertemperaturanwendungen	Climaver
		%	kalt		Jahreszeitbedingte Raumheizungs-Ene		Energieeffizienz Raumheizung bei k	älteren l
Raumheizungs-	ης				Wärmenennleistung	rgiocinizioniz	Mitteltemperaturanwendungen	ancioni
Energieeffizienz			mittel		Jährlicher Energieverbrauch	-	Energieeffizienz Raumheizung bei k	älteren l
LiferBreeffizienz			warm		Mitteltemperaturanwendung bei durc	hschnittlichen	Niedertemperaturanwendungen Energieeffizienz Raumheizung bei w	värmere
			waim		Klimaverhältnissen	instrument in	für Mitteltemperaturanwendungen	rumore.
Wärmenennleistung	P _{rated}	kW	kalt		Jahreszeitbedingte Raumheizungs-Ene	rgieeffizienzklasse	Energieeffizienz Raumheizung bei w	värmere
					Jahreszeitbedingte Raumheizungs-Ene	rgieeffizienz	für Niedertemperaturanwendungen Energieverbrauch Raumheizung bei	kälterer
			mittel		Wärmenennleistung		für Mitteltemperaturanwendungen	Rantoro
			warm		Jährlicher Energieverbrauch		Energieverbrauch Raumheizung bei	kälterer
			. Consideration		Niedertemperaturanwendung bei kält	teren Klimaverhältniss	für Niedertemperaturanwendungen Energieverbrauch Raumheizung bei	wärme
	Q _{HE}	kWh	kalt	1	Jahreszeitbedingte Raumheizungs-Ene	rgieeffizienz	jeweils für Mitteltemperaturanwendu	
jährlicher			mittel	8	Wärmenennleistung		Energieverbrauch Raumheizung bei	
Endenergieverbrauch				C	Jährlicher Energieverbrauch		jeweils für Niedertemperaturanwend Schallleistungspegel Außen	ungen
· ·			warm	4	Mitteltemperaturanwendung bei kälte	eren Klimaverhältnisse		
			Innenraum		Jahreszeitbedingte Raumheizungs-Ene	rgieeffizienz		98 %
Schallleistungspegel	L _{WA}	dB(A)			Wärmenennleistung			7 kW
			im Freien		Jährlicher Energieverbrauch		6:	963 kWh
Besondere Vorkehrungen, die bei der Montage, der Installation				Niedertemperaturanwendung bei wär	meren Klimaverhältni	ssen		
			si	Jahreszeitbedingte Raumheizungs-Energieeffizienz			238 %	
oder Wartung des Gerätes getroffen werden müssen:			Wärmenennleistung			3 kW		
					Jährlicher Energieverbrauch		(652 kWh
					Mitteltemperaturanwendung bei wärn	neren Klimaverhältnis	sen	
					Jahreszeitbedingte Raumheizungs-Ene	rgieeffizienz		164 %
					Wärmenennleistung			3 kW
					Jährlicher Energieverbrauch			891 kWh

		WPL 15 IS-2
		231888
fersteller		STIEBEL ELTRON
nergieeffizienzklasse Raumheizung bei durchschnittlichen Klimaverhältnissen jeweils für Mitteltemperaturanwendungen		A++
nergieeffizienzklasse Raumheizung bei durchschnittlichen (limaverhältnissen jeweils für Niedertemperaturanwendungen		A++
Värmenennleistung bei durchschnittlichen Klimaverhältnissen jeweils für Mitteltemperaturanwendungen	kW	. 8
Värmenennleistung bei durchschnittlichen Klimaverhältnissen jeweils für liedertemperaturanwendungen	kW	7
nergieeffizienz Raumheizung bei durchschnittlichen Klimaverhältnissen eweils für Mitteltemperaturanwendungen	%	133
nergieeffizienz Raumheizung bei durchschnittlichen Klimaverhältnissen eweils für Niedertemperaturanwendungen	%	175
nergieverbrauch Raumheizung bei durchschnittlichen (limaverhältnissen jeweils für Mitteltemperaturanwendungen	kWh/a	4865
nergieverbrauch Raumheizung bei durchschnittlichen (limaverhältnissen jeweils für Niedertemperaturanwendungen	kWh/a	3444
Schallleistungspegel Innen	dB(A)	49
Värmenennleistung bei kälteren Klimaverhältnissen jeweils für Aitteltemperaturanwendungen	kW	11
Värmenennleistung bei kälteren Klimaverhältnissen jeweils für liedertemperaturanwendungen	kW	10
Värmenennleistung bei wärmeren Klimaverhältnissen jeweils für Aitteltemperaturanwendungen	kW	5
Värmenennleistung bei wärmeren Klimaverhältnissen jeweils für liedertemperaturanwendungen	kW	5
nergieeffizienz Raumheizung bei kälteren Klimaverhältnissen jeweils für Aitteltemperaturanwendungen	%	125
nergieeffizienz Raumheizung bei kälteren Klimaverhältnissen jeweils für liedertemperaturanwendungen	%	156
nergieeffizienz Raumheizung bei wärmeren Klimaverhältnissen jeweils ür Mitteltemperaturanwendungen	%	145
nergieeffizienz Raumheizung bei wärmeren Klimaverhältnissen jeweils ür Niedertemperaturanwendungen	%	203
nergieverbrauch Raumheizung bei kälteren Klimaverhältnissen jeweils ür Mitteltemperaturanwendungen	kWh/a	8535
nergieverbrauch Raumheizung bei kälteren Klimaverhältnissen jeweils ür Niedertemperaturanwendungen	kWh/a	6106
nergieverbrauch Raumheizung bei wärmeren Klimaverhältnissen sweils für Mitteltemperaturanwendungen	kWh/a	1671
nergieverbrauch Raumheizung bei wärmeren Klimaverhältnissen weils für Niedertemperaturanwendungen	kWh/a	1230
Schallleistungspegel Außen	dB(A)	54

Energy-Label und Produktdatenblatt 🕒



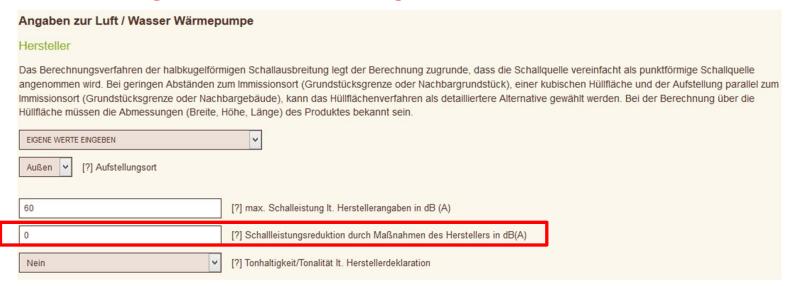
GET-Datenbank: Schallleistung

- Im Energy-Label:
 Schallleistung beim Prüfpunkt A7/W55
- Im Schallrechner der WPA:
 max. Schallleistung im Freien
 (lt. Herstellerangaben)
 - → Werte in der GET-Datenbank
 - → Aktualisierung des Schallrechners

 ca. einmal monatlich mittels

 Auszug aus der GET-Datenbank

Energy-Label und Produktdatenblatt


Unterschiedliche Schallleistungen

- Im Energy-Label: Schallleistung beim Prüfpunkt A7/W55
 - Gemessen nach EN 12102 unter Normbedingungen nach EN 14511-2
- Im Schallrechner der WPA: max. Schallleistung im Freien (It. Herstellerangaben)
 - Schallleistung beim Prüfpunkt und bei der Drehzahl, bei denen das Gerät am lautesten ist
 - Derzeit gibt es noch keine Norm etc., in der die Prüfung der max. Schallleistung geregelt ist
 - → Bei einstufigen Geräten entspricht die max. Schallleistung der ErP-Schallleistung
 - → Bei modulierenden Geräten kann die sich die max. Schallleistung von der ErP-Schallleistung unterscheiden

Energy-Label und Produktdatenblatt 🕒

Korrekte Eingabe der Schallleistung in den Schallrechner

Um einen drehzahlreduzierten Betrieb in den **Nachtstunden (z. B. von 22:00-06:00 Uhr)** muss der Wert der Schallleistungsreduktion (Differenz) in das entsprechende Feld eingegeben werden (positive Zahlen). Hier können auch **Schallschutzmaßnahmen**, wie zum Beispiel Schallschutzhauben, **geltend gemacht werden**.

Titel & Gliederung

Herstellerdaten richtig Anwenden

- Rechtliche Rahmenbedingungen und Fristen
- Energy-Label und Produktdatenblatt
- Gütesiegel, Umweltzeichen & Effizienzkennzahlen
- Auslegung und Dimensionierung in der Praxis
- Zusammenfassung und Fazit

Gütesiegel, UZ & Effizienzkennzahlen 🔷

EHPA-Gütesiegel (Effizienz):

Einheitlich hoher Qualitätsstandard und Kundenservice durch:

- Einheitliche Prüfkriterien
- KontrollierteFabrikationsstandards
- Geforderte minimale Effizienz
- Prüfung derSicherheitseinrichtungen
- Messung der Schallemissionen
- Ersatzteilsicherheit für mind. 10
 Jahre und 24 h-Kontakt im
 Vertriebsgebiet

EU-Umweltzeichen (Ökologie):

Zusätzliche ökologische Anforderungen durch:

- Kältemittel mit geringen CO₂-Äquivalent (GWP100 ≤ 2000)
- THG-Wert ≤ 150 g CO₂-Äquivalent pro kWh Heizleistung
- Empfehlung für ein ökologisch unbedenkliches
 Sekundärkältemittel (z. B. Propylenglykol) bei SoleWärmepumpen

EHPA-Gütesiegel: Mindestanforderungen an die Effizienz

Mindestwerte für die saisonale Leistungszahl SCOP:

Luft/Wasser: 3,50

Sole/Wasser: 4,10

Wasser/Wasser: 4,10

Direktverdampfung/Wasser: 4,10

Luft/Luft: 3,40

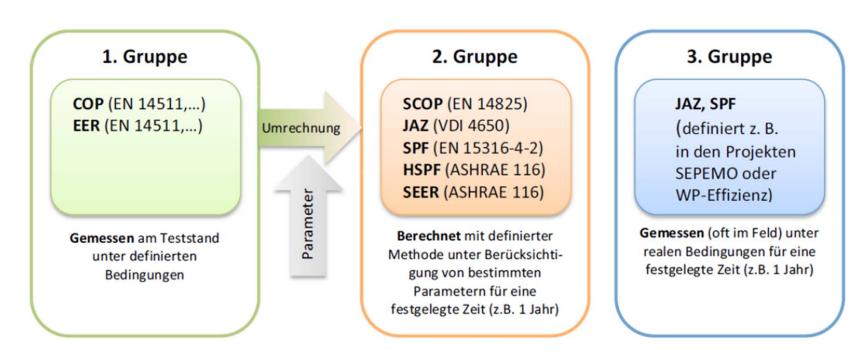
Brauchwasser:

EHPA-Gütesiegel: Der Weg zum Gütesiegel

- Prüfung der Baureihe bei einem anerkannten akkreditierten Prüfinstitut oder über HP-Keymark
- Ansuchen bei einer der nationalen Gütesiegelkommissionen
- Die Gütesiegelkommission prüft die Unterlagen und vergibt das Gütesiegel
- Das Gütesiegel wird auf 3 Jahre vergeben, danach kann es zwei weitere Male verlängert werden

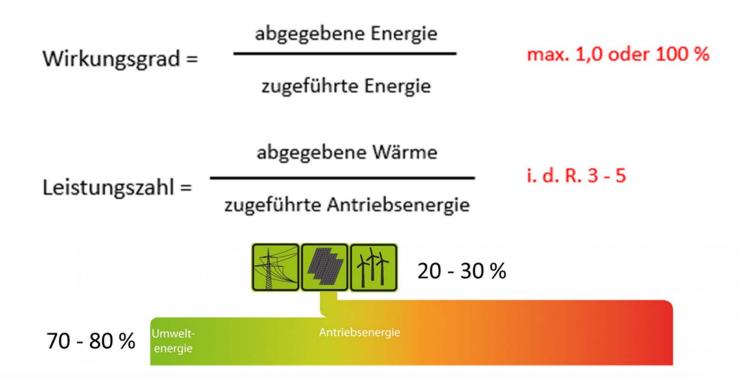
Begriffe aus Theorie & Praxis

- Zur Charakterisierung von thermodynamischen Kreisprozessen im Allgemeinen und Wärmepumpenprozessen im Speziellen existieren verschiedene Kennzahlen:
- Carnot-Wirkungsgrad ncarnot


Allgemein

WP-Spezifisch

- Jahresarbeitszahl JAZ
- Leistungszahl Coefficient of Performance COP
- Saisonale Leistungszahl Seasonal Coefficient of Performance SCOP
- Jahreszeitbedingte Raumheizungs-Energieeffizienz ns


Begriffe aus Theorie & Praxis: Effizienz-Kennzahlen

Quelle: Fraunhofer ISE, Dr. Marek Miara, Vortrag am 17.03.2016 in Salzburg

Begriffe aus Theorie & Praxis

Begriffe aus Theorie & Praxis – Carnot-Leistungszahl

Theoretisches Limit der Leistungszahl beschreibt die Carnot-Leistungszahl (Kehrwert: Carnot-Wirkungsgrad); Bsp.:

COP Carnot =
$$\frac{T_{warm}}{T_{warm} - T_{kalt}} = \frac{273 + 35}{35 - (+2)} = 9,3$$

- Einflussgrößen: Temperatur Quelle und Senke, Spreizung
- Da weder der absolute Nullpunkt (0 K), noch unendlich hohe Temperaturen erreicht werden können, ist ein theoretisches Limit in der Praxis unerreichbar.

Begriffe aus Theorie & Praxis – Leistungszahl COP

Kennzahl für die Effizienz einer elektrisch betriebenen Kompressionswärmepumpe im stationären Betriebszustand bei bestimmten Temperaturbedingungen ist die Leistungszahl (engl.: Coefficient of Performance COP)

$$COP = \frac{\text{Heizleistung}}{\text{elektrische Leistung}}$$

- Verhältnis zwischen der von der Wärmepumpe gelieferten Heizleistung und der zum Antrieb des Verdichters benötigten elektrischen Antriebsleistung
- Die Leistungszahl gilt bzw. ist immer nur für einen bestimmten Betriebspunkt aussagekräftig, wie z. B. bei B0/W35

Begriffe aus Theorie & Praxis – Saisonale Leistungszahl SCOP

Wesentlicher Unterschied zum COP:

- Die Leistungsmessung wird beim SCOP nicht nur bei einem, sondern bei vier unterschiedlichen Werten ermittelt
- Messpunkte für den Heizbetrieb bei 12°C, 7°C, 2°C und -7°C Außentemperatur
- Einteilung von Europa in drei Klimazonen kalte-, warme- und durchschnittliche Klimaverhältnisse
- Die Leistung des E-Heizstabs wird mitberücksichtigt
- Beim SCOP wird auch der Teillastbetrieb von Inverter-Kompressoren berücksichtigt

Begriffe aus Theorie & Praxis – Jahreszeitbedingte Raumheizungs-

Energieeffizienz ns

Berechnung aus dem SCOP:

- Mittels Division durch den Europäischen Primärenergiefaktor für Strom: 2,5
- 3 % Abschlag für die Reglergüte (bei allen Wärmepumpen)
- 5 % Abschlag bei Wasser/Wasser- und Sole/Wasser-Wärmepumpen für den Elektrizitätsverbrauch der quellseitigen Umwälzpumpe

Bsp. Sole/Wasser-Wärmepumpe
$$SCOP = 4,09 \text{ (Mitteltemperaturan wendung 55 °C)}$$
 Energieeffizienzklasse A++
$$\eta_s = \left(\frac{4,09}{2,5}\right).100 \text{ [\%]} - 3 \text{ [\%]} - 5 \text{ [\%]} = \textbf{163,52 [\%]}$$

- Grundlage zur Einteilung in die Effizienzklasse im Energy-Label
- Für Niedertemperatur- (35 °C) und Mitteltemperaturanwendung (55 °C)

Begriffe aus Theorie & Praxis - Prated und Pdesign

Nennwärmeleistung für Niedertemperaturanwendung (35 °C) Prated...

und Mitteltemperaturanwendung (55 °C)

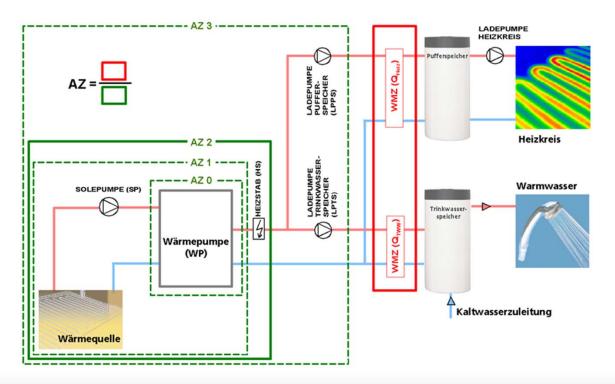
Auslegungsleistung (Volllast) inklusive Leistung des E-Heizstabes bei Pdesignh... Auslegungsbedingungen Tdesignh

$$P_{\text{designh}} = P_{\text{rated}} + P_{\text{sup}}$$

- Psup... Wärmenennleistung eines Zusatzheizgerätes (E-Heizstab)
- Temperaturbedingungen für mittleres, kälteres und wärmeres Klima Tdesignh...

Begriffe aus Theorie & Praxis – Arbeitszahl JAZ

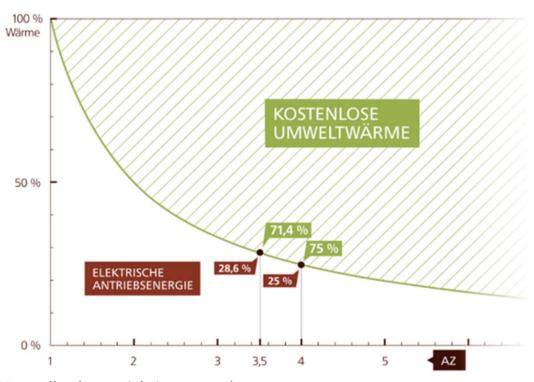
Die über das ganze Jahr gemittelte Leistungszahl einer Wärmepumpe wird als Jahresarbeitszahl (engl. Saisonal Performance Factor SPF) bezeichnet.


$$JAZ = \frac{\sum der \ an \ das \ Heizungssystem \ abgeg. \ Wärmeenergie}{\sum der \ aufgenommenen \ elektrischen \ Energie}$$

- Verhältnis zwischen der von der Wärmepumpe innerhalb eines Jahres gelieferten Wärme und der innerhalb eines Jahres benötigten elektrischen Antriebsenergie
- Um unterschiedliche Wärmepumpensysteme vergleichen zu können, ist auf die Bilanzgrenze zu achten

Begriffe aus Theorie & Praxis – Bilanzgrenzen von Arbeitszahlen

Je nach Bilanz werden z. B. Soleumwälzpumpen, E-Heizstab etc. hinzugezählt oder nicht


Derzeit werden mit Wärmepumpen mittlere JAZ zwischen 3,5 und **5,1** erreicht.

Gütesiegel, UZ & Effizienzkennzahlen 🔷

Verhältnis zwischen Umweltwärme und Antriebsenergie

Je nach Bilanz werden z. B. Soleumwälzpumpen, E-Heizstab etc. hinzugezählt oder nicht

AZ von 3,5 = 28,6 % elektrische Antriebsenergie

AZ von 4,0 = 25 % elektrische Antriebsenergie

Differenz sind "nur" 3,5 %

Herstellerdaten richtig anwenden

Gütesiegel, UZ & Effizienzkennzahlen 💪 WÄRMEPUMPE

Prüfbericht: zugrunde liegende Normen

Leistungsprüfung nach:

EN 14511 – Luftkonditionierer, Flüssigkeitskühlsätze und Wärmepumpen für die Raumbeheizung und –kühlung und Prozess-Kühler mit elektrisch angetriebenen Verdichtern oder

EN 14825 – Luftkonditionierer, Flüssigkeitskühlsätze und Wärmepumpen mit elektrisch angetriebenen Verdichtern zur Raumbeheizung und -kühlung - Prüfung und Leistungsbemessung unter Teillastbedingungen und Berechnung der saisonalen Arbeitszahl

Durch ein akkreditierten Prüfinstitutes

In Österreich: Austrian Institute of Technology (AIT)

Gütesiegel, UZ & Effizienzkennzahlen 🔷

Prüfbericht: Inhalt (Auszug)

- COPs und Prüfpunkte (Heizleistung, Leistungsaufnahme, Leistungszahl)
- Saisonale Leistungszahl
- Sicherheitsprüfung
- Technische Angaben zu Komponenten,
 Kältemittel und Prüfung
- Schallleistung
- Obere und untere Einsatzgrenze für Wärmequelle und Wärmesenke

Prüfbericht/Test Report

Bezeichnung des Projekte Project Dosignation

Typenprüfung einer Luft/Wasser-Wärmepumpe

laut EN 14825

Test of an Air/Water heat pump

according to EN 14825

Client

Projekt Nr.

Sachbearbeiter Test Egglober

Ausstellungsdatum Date of issoe	09.01.2015	
Ausfertigungen: Anzahl/Nr. Totel number of Issues / No.	1/1	
Anzehl der Seiten Number of pages	18	
Anzahl der Belagen Number of annexes	-	

Das (Die) Prüfergebnis(se) barieht(en) sich ausschließlich auf den (die) Prüfgegenstand(stände). The results relate exclusively to the forms tested.

Im Falb einer Vervielfältigung oder Verölfentlichung dieser Ausfortigung dod der Inhalt nur wort- und farmgetreu und ohne Ausliessung oder Zusatz wisciergegeben wysten. This report musy oder be reproduced or published in fall, without omissions, eterations or enditions.

Die auszugsweise Vervielfälligung oder Veröffentlichung hadarf dar schriftlichen Zustimmung des Forschungszentrums. Die reproduction ar publishing af aufracis from this repert require the written approvet of file research center.

Austrian Institute of Technology Gueld | Domo-City-Storbe 1: 1220 Wien, Austria | T. +45 (8):50 SSB 0 | F. +42 (8):50 SSB 0 | F. +42

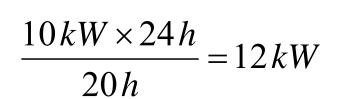
Titel & Gliederung

Herstellerdaten richtig anwenden

- Rechtliche Rahmenbedingungen und Fristen
- Energy-Label und Produktdatenblatt
- Gütesiegel, Umweltzeichen & Effizienzkennzahlen
- Auslegung und Dimensionierung in der Praxis
- Zusammenfassung und Fazit

Überschlägige Ermittlung der Gebäudeheizlast anhand des spezifischen Wärmebedarfes

Wärmebedarf	Gebäudetyp
30 W/m²	Niedrigstenergiehaus
40 W/m ²	Aktueller Neubau mit sehr guter Wärmedämmung
50 W/m ²	Gebäude mit normaler Wärmedämmung (ab ca. 2000)
80 W/m ²	Gebäude mit normaler Wärmedämmung (ab ca. 1980)
120 W/m ²	Gebäude ohne besondere Wärmedämmung



Zuschlag für EVU-Sperrzeiten

Beispiel:

Berechneter Wärmebedarf: 10 kW

Sperrzeit: 2 x 2 Stunden

Maximal mögliche Sperrzeit pro Tag	Leistungszuschlag für die Wärmepumpe
1 x 1 Stunde	5 %
1 x 2 Stunden	10 %
2 x 2 Stunden	20 %
3 x 2 Stunden	33 %

Zuschlag für Warmwasserbereitung

Durchschnittlicher Warmwasserbedarf pro Person und Tag:

50 – 100 Liter mit 45°C Warmwassertemperatur

Zuschlag: + 0,25 kW pro Person

Wichtig:

Bei größerem Warmwasserbedarf (Regenwalddusche, große Badewanne, Wellnessbereich,...) ist die benötigte Zusatzleistung separat zu berechnen

Zuschlag für Sondernutzung Schwimmbadbeheizung

Freibad, nur im Sommer beheizt (außerhalb der Heizsaison):

- Mehr Jahreslaufzeit
- Größere Wärmequelle
- Kein Leistungszuschlag

Hallenbad, ganzjährig beheizt oder Freiflächenheizung:

- Leistungszuschlag für Beckenwassererwärmung und Raumheizung
- Mehr Jahreslaufzeit
- Größere Wärmequelle

Beispiel Schwimmbaderwärmung: Freibecken mit 8 x 4 x 1,5 m

Es werden 1,16 kWh Energiemenge benötigt um 1 m³ Wasser um 1 K zu erwärmen!

Berechnung It. Formel:
$$\frac{1000l \cdot 1K \cdot 4,187kJ / kg \cdot K}{3600} = 1,16kWh$$

 $8 \times 4 \times 1,5 = 48 \text{ m}^3$

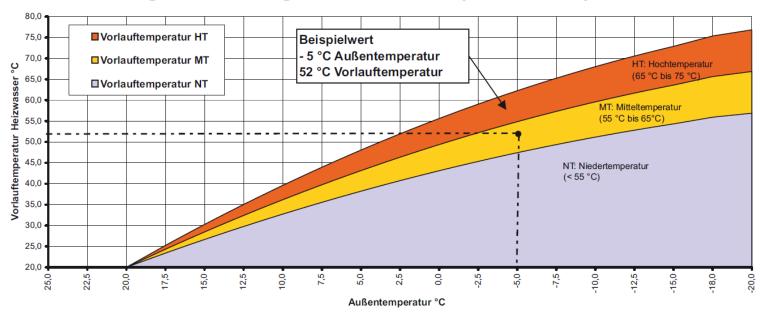
Erstaufheizung um 15 K (von 10°C auf 25°C)

Erstaufheizung: $48 \times 15 \times 1,16 = 835 \text{ kWh}$

Nachheizung: Je nach Witterung und Abdeckung verliert ein Schwimmbecken zwischen 1 und 2,5 K pro Tag.

Nachheizung: 48 x 1 x 1,16 = 55 kWh

Zuschlag für Sondernutzung Freiflächenheizung


Minimale Außentemperatur	Eisfrei	Eis- und Schneefrei*
-5 °C	96 W/m²	216 W/m²
-10 °C	156 W/m²	221 W/m²
-15 °C	216 W/m²	249 W/m²
-20 °C	276 W/m²	276 W/m²

^{*}Leistungsbedarf für maximal 1 cm Schnee je Stunde und Quadratmeter

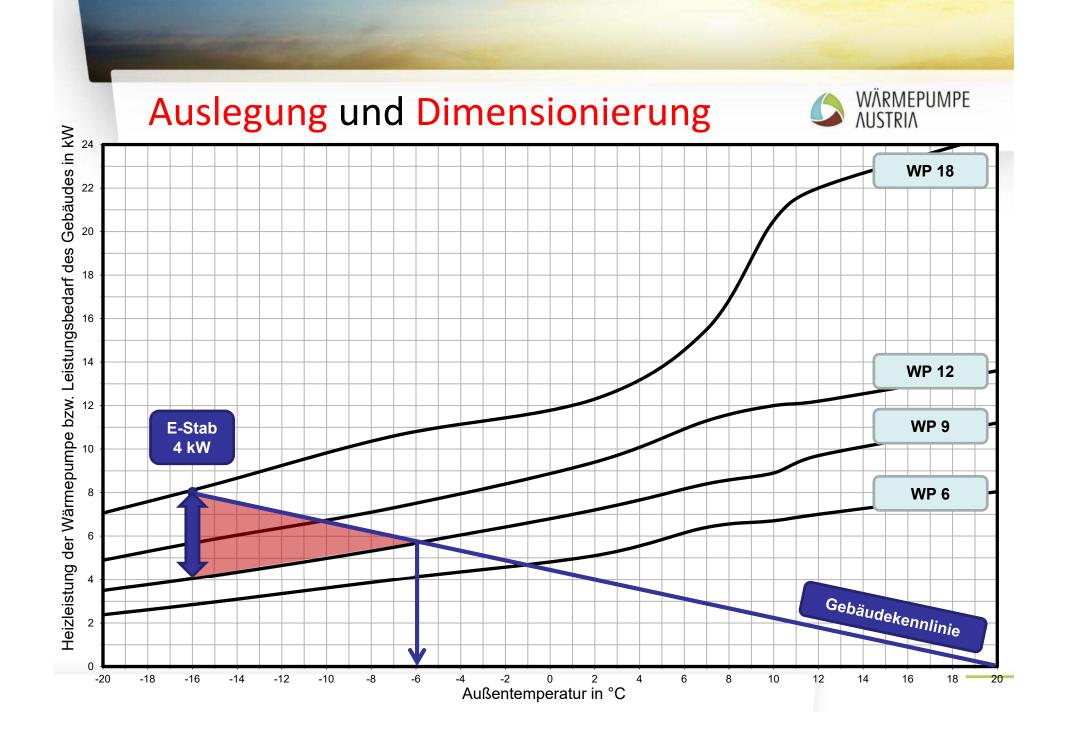
- Systemtrennung erforderlich
- Freiflächenheizung mit Frostschutz füllen
- Feuchteresistente Wärmedämmung unter Rohren empfehlenswert
- Belastungsfähigkeit der Wärmedämmung beachten
- Vorlauftemperaturen 40 bis 45 °C

Bestimmung der benötigten Vorlauftemperatur: Experimentelle Methode

- Thermostatventile vollständig öffnen
- Vor- und Rücklauftemperaturen so lange senken, bis sich die gewünschte Raumtemperatur einstellt
- Vorlauftemperatur und Außentemperatur in das Diagramm eintragen

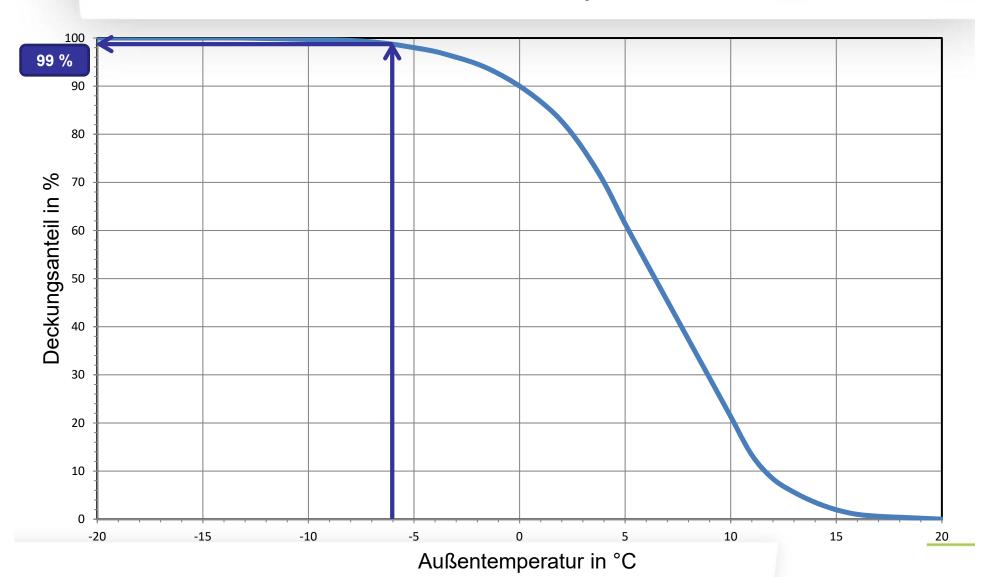
Dimensionierung von Luft/Wasser-Wärmepumpen – Beispiel

Neubau mit Fußbodenheizung 3-Personen-Haushalt Normaußentemperatur -16°C EVU Sperrzeit 2 Stunde pro Tag 6,5 kW Gebäudeheizlast


Zuschlag Warmwasserbereitung: + 0,75 kW = 7,25 kW

Zuschlag EVU-Sperre: $+ 10\% = 7,975 \text{ kW} \approx 8 \text{ kW}$

Welche Wärmepumpe wähle ich aus (Bivalenzpunkt)?
Welche Leistung muss die Zusatzheizung haben?
Welchen Anteil an der Jahresheizarbeit bringt die Wärmepumpe?



Jahresheizarbeit – bivalent parallel

Beispiel Salzburg: Wahl des Bivalenzpunktes für die Auslegung

Wahl des Bivalenzpunktes in Abhängigkeit der Normaußentemperatur

<u>Um Unter- und Überdimensionierung zu vermeiden:</u>

Untere Grenze: Normaußentemperatur + 4 K

Obere Grenze: Normaußentemperatur + 10 K

Die Nennwärmeleistung der Wärmebereitstellungsanlage darf grundsätzlich die errechnete Heizlast (unter Berücksichtigung der energetisch wirksamen Luftwechselrate) des Gebäudes um max. 30 % überschreiten.

Titel & Gliederung

Herstellerdaten richtig anwenden

- Rechtliche Rahmenbedingungen und Fristen
- Energy-Label und Produktdatenblatt
- Gütesiegel, Umweltzeichen & Effizienzkennzahlen
- Auslegung und Dimensionierung in der Praxis
- Zusammenfassung und Fazit

Zusammenfassung und Fazit

Energy-Label, Schall und Leistungszahlen

- Energy-Label als Information für den Endnutzer, keine wirtschaftliche Bewertung
- Zum Energy-Label gehört immer ein Produktdatenblatt
- Schall im Energy-Label beim Prüfpunkt A7/W55
- Schall im **Schallrechner** ist die **max. Schallleistung** (lt. Herstellerangabe)
- Alle Werte sind unter www.produktdatenbank-get.at abrufbar
- Zusammenhang SCOP und n₅ über Europäischen PE-Faktor für Strom (2,5)
- η_s ist Grundlage für die Einteilung in Energieeffizienzklassen
- Pdesignh = Prated + Psup (Nennwärmeleistung = Auslegungsleistung + Zusatzleistung)
- Bei der Auslegung sind Zuschläge für EVU-Sperrzeiten und WW-Bereitung vorzusehen

www.waermepumpe-austria.at

